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Abstract 

A method of deriving an extinction-free estimate of an 
X-ray structure-factor value is outlined. The method is 
based on the availability of experimental estimates of 
the level of extinction from the mosaic distribution of 
the crystal. A plot of the diffracted intensity or its cor- 
responding structure factor (uncorrected or nominally 
corrected for extinction) against the percentage extinc- 
tion effect yields an extinction-free value in the limit on 
extrapolation to zero level. Such a procedure can also 
reveal any inadequacy in the correction procedures by 
lack of internal consistency. An illustration of the 
potential of this procedure is given using the set of 11 
experimental values o f f  for the 220 reflexion of Cu 
derived by Schneider [Acta Cryst. (1977), A33, 235- 
243] from y-ray diffractometry. Use of the experi- 
mental estimates of the level of extinction together 
with the nominally corrected f data indicates the 
presence of systematic residual error. Linear extrap- 
olation of these f values to zero extinction yields an 
estimate o f f ( 2 2 0 )  in the region of 16.77. A value in 
this region is more in accord with a Hartree-Fock 
value than with the band-structure value, which was 
favoured by Schneider's original estimate of 16.46. 

Introduction 

The derivation of an absolute value of an X-ray 
structure factor from measurements of diffracted 
intensity requires that it corresponds to the condition of 
zero extinction, a condition which is only defined 
exactly when the diffracted power is zero (Mathieson, 
1978). It follows that an absolute value of a structure 
factor is only attainable with a procedure which allows 
extrapolation to the condition of zero diffracted power. 
One line of approach involves a series of measure- 
ments of intensity on a single specimen with controlled 
change of a suitable physical variable, so that the ratio 
of measured intensity to an appropriately chosen 
function of the variable tends to a non-zero limiting 
value at the limit of zero diffracted power (Mathieson, 
1979). This type of null-power measurement provides a 
clear-cut operational limit to the extrapolation. 
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This paper deals with an alternative but less definitive 
procedure which involves a series of measurements 
with different specimens whose internal morphologies 
differ significantly one from the other, and for which a 
numerical estimate of the magnitude of the extinction 
effect can be derived from experimental measure- 
ments. Extrapolation to (nominal) zero extinction of 
either the original or the corrected values of the 
integrated intensity (or the corresponding derived 
structure factor) should yield an extinction-free value in 
the limit. By contrast with the single-specimen null- 
power procedure, the definition of the extrapolated limit 
may not be as clear-cut, since it is dependent on the 
theoretical basis of the numerical estimate of the 
magnitude of the extinction effect. 

An illustration of the potential of this latter pro- 
cedure and of its significance with respect to obtaining 
structure-factor values is given here, based on a re- 
interpretation of some recent careful studies of the 220 
reflexion of Cu with ),-ray diffractometry by Schneider 
(1976, 1977), chosen because these experimental data 
are, in our view, of the highest quality. 

The original data and conclusions 

The data, reported on by Schneider, related to careful 
measurement on 11 different volume elements of a 
single-crystal specimen of Cu, and demonstrate 
dramatically the path-dependent character of extinction 
(see also Lawrence & Mathieson, 1977). Interpreting 
the scan profiles as giving a direct estimate of the 
probability density function, W, for the orientation of 
the reflecting crystallites, Schneider applied point-by- 
point corrections for secondary extinction, based on 
Darwin's energy-transfer equations, to the individual 
curves and derived a series of nominally absolute 
estimates, f of f (220).  The 11 values of f were 
presented in graphical form together with values of P2. 
The latter was an estimate of the degree of extinction 
for each volume element derived from the uncorrected 
measured integrated intensity, R m, and a value of 
Rki n based on a value fref for ./'(220) chosen by 
Schneider. Equation (1), which defines P2, is effectively 
the same as that in Schneider (1976, p. 399). It also 
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defines fro, the atomic scattering factor uncorrected for 
extinction, a quantity not given numerically by 
Schneider. 

Rrn f2m 
p2 = 1 - 1 - - - - .  (1) 

Rki. fler 
In assessing the validity of the 11 values for f ,  

Schneider made a subjective decision that, for volumes 
10 and 11, 'extinction was significantly under-estimated 
for these two measurements which will be excluded 
from all further consideration'. The remaining nine 
experimental values werc quoted to be 'significantly 
smaller than the Hartree-Fock free-atom value and (to) 
oscillate around a theoretical value which is the average 
of the two different values obtained from band cal- 
culations by Arlinghaus (1967) and by Wakoh & 
Yamashita (1971)'. The data for these nine were there- 
fore treated as subject only to random errors and the 
mean value deduced for f (220)  was 16.46 + 0.02, 
where the quoted error is one standard deviation of the 
mean. 

The need for reinterpretation 

If the correction procedure for volumes 10 and 11 was 
incomplete, there appears to be no objective reason 
why a similar deficiency should not apply to volumes 1 
to 9. 

If one allows the possibility that the correction pro- 
cedure applied by Schneider was incomplete due to 
partial breakdown of the assumptions involved, then 
the corrected data for all volumes, 1 to 11, would still 
retain residual errors due to extinction, to an extent 
dependent on the original magnitude of the extinction. 
Under these circumstances, there is no a priori reason 
to treat 10 and 11 as different from 1 to 9. Rather one 
should consider all volumes on an equal footing. 

The original stimulus for the present enquiry was a 
plot of f against Pz, which appeared to indicate a 
simple functional relationship and therefore the pos- 
sibility of extrapolation. However, further thought 
persuaded us that, while this possibility remained, the 
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use of P2 was misleading because, among other 
reasons, fref is to some extent arbitrary, so that the 
origin of P2 is equally arbitrary and the end point of the 
extrapolation ill-defined. An estimate of the percentage 
extinction effect more closely related to the experi- 
mental measures was obviously necessary and this was 
made feasible since Schneider recorded W in full detail 
for the 11 volumes. 

An appropriate measure of extinction (Robinson, 
1933)* in each volume is 

p~ = l - - y =  1 - ( f r o ~ f )  2. (2) 

For each volume the value of Pl depends only on an 
integration over the actual profile to obtain fm and 
over the point-by-point corrected profile to obtain 
f;  assumptions concerning "expected' values off(220), 
of either experimental or theoretical origin, are 
avoided. While Schneider carried out this process 
of correction, we have no record of the values of 
pt he may have obtained.q" However, the values of 
both p~ and f,,, can be reconstructed using Schneider's 
published data and this is done below. 

Reinterpretation 

The graphical information presented by Schneider was 
carefully measured and the resulting numerical values 
for various quantities are given in Table 1. The reading 
accuracy (and probably the plotting accuracy) was 
about +0.007 for f ,  +0.07 for P2 and +1% for the 
density function W. In accordance with the theory 

* In this classic work on the measurement of one order of 
anthracene at two wavelengths using 18 crystals, Robinson used the 
technique of profile correction for extinction. His method was 
potentially iterative rather than the one-step procedure used by 
Schneider. 

5- Reference to Table 2 shows that for volumes 1 to 9 the values 
of p~ are almost constant and about 4%. It is easily shown that 
such constancy of p t implies that a plot of f against P2 should be 
nearly linear and so extrapolation using P2 is of little physical sig- 
nificance. 

Table 1. Input data read and computed from Schneider's figures 

Density integrals Fitted double Gaussian gives 

Volume f P2 (%) 

I 16-491 3-15 0.3650 
2 16.500 2.91 0.3445 
3 16.341 4.73 0.3404 
4 16.364 4.03 0.3167 
5 16.557 2.01 0.3226 
6 16.565 2.50 0.3713 
7 16.465 4.32 0.4390 
8 16.448 3.73 0.3532 
9 16.457 3.55 0-3452 

10 16-150 11.07 0.7460 
11 16.213 10.27 0.7260 

W 2 x 10 -3 W 3 × 10 -6 W4 × 10 -9. l'Vmax W4 × 10-9 g r, r 2 

0.2496 0.2198 1120.0 0.2229 0.2088 0-326 4-502 
0.1841 0.1207 880.0 0.1240 0.1798 0.416 3-919 
0. 1890 0.1250 864.0 0.1302 0.2336 0.509 4-473 
0. 1535 0.0877 752.0 0.0909 0.2176 0.585 4.434 
0.1400 0.0702 688.0 0.0719 0-1337 0.511 3-611 
0.2136 0.1474 864.0 0-1484 0-2540 0.571 4.028 
0.3217 0.2783 1048.0 0.2797 0-3303 0-545 4.233 
0.1820 0-1096 736.0 0.1094 0-2918 0.794 4-187 
0. 1599 0.0853 704.0 0.0865 0. 1571 0.585 3.440 
0-8334 1.0449 1520.0 1.1505 0.3985 0-489 2-047 
0.7468 0.8486 1344.0 0.8525 0-4972 0.630 2-642 
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Table 2. Values of pl, fm and pzest derived from Schneider's data for f and W 

Volume f R X 10 3 P, (%) = WzR --}W3 Rz + ]W4 R3 frn Pzest P2 P2e,t-P~ 

1 16-491 0-12242 4.233 4.469 --0.249 0.013 16.138 3-261 3.15 0-111 
2 16.500 O- 12255 4-045 4.222 --0-184 0.007 16.163 2.966 2.91 0.056 
3 16.341 O. 12020 3.917 4-092 --0.182 0.007 16.018 4.700 4.73 --0.030 
4 16.364 0.12054 3-674 3.818 --0-149 0.005 16-061 4-190 4-03 0-160 
5 16.557 O. 12340 3-843 3.981 -0.142 0-004 16-236 2.089 2.01 0.079 
6 16.565 O. 12352 4.378 4.586 --0.217 0.009 16-198 2-539 2.50 0-039 
7 16.465 O. 12203 5.055 5.357 --0-319 0.017 16.043 4.394 4.32 0.074 
8 16.448 O- 12178 4.128 4.301 -0.180 0-007 16.105 3.660 3 .73 --0.070 
9 16.457 O. 12192 4.055 4.209 --0.158 0.005 16-120 3.481 3 .55 --0.069 

10 16-150 0.11741 8.049 8.758 --0.766 0.056 15.486 10.918 11.07 --0.152 
11 16.213 0.11833 7-941 8.591 --0.697 0-047 15.556 10.116 10.27 --0.154 

presented later, the nth powers of these curves were 
integrated to give the tabulated values of IV,; the 
estimated value of W l was unity to better than 1% when 
scaled to radian measure (3438' = 1 rad). The 
remaining columns in Table 1 refer to the constants for 
a double-Gaussian approximation. This is used, as 
described below under Theory, to estimate limits for the 
effect of deconvolution of the density functions for the 
finite angular resolving power of the apparatus. The 
required values of Pl and of fm were computed by 
means of the theory given later and are listed in Table 
2. 

The derived uncorrected measurements fm are 
plotted as full circles in Fig. 1 against the derived 
estimates Pl of the magnitude of the (secondary) 
extinction effect. Values for volumes 1 to 9 are closely 
bunched together over a relatively limited range of Pl 
so that we may take these as representing the experi- 
mental spread of fm for Pl ~ 4%. Volumes 10 and 11 
correspond to Pl ~ 8% and unfortunately constitute a 
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Fig. 1. Plots of atomic scattering factors f for Cu against an 
experimental estimate of the secondary-extinction effect. The 
solid circles are for raw measured values and the open circles 
are corrected for secondary extinction for all of 11 volume 
elements. The dotted and dashed curves represent two extreme 
estimates of the effect of correcting for a finite angular 
resolution of the apparatus. 

more restricted sample. Linking the centres of  these two 
groups and extrapolating linearly* to Pl = 0 yields a 
nominally zero-extinction-limit value of 16.77. 

The corrected values are likewise plotted as open 
circles in Fig. 1 and the same extrapolation procedure 
leads to almost the same limit value. This is to be 
expected since the theory shows that  the correction is 
dominated by the first term in equation (12) and so is 
almost proportional to Pl. 

If the correction procedure for deriving f from fm 
were complete, the same values of f would be obtained 
(within the experimental error) for the two groups and 
the extrapolating line for f would be nearly horizontal. 
It is therefore evident from Fig. 1 that the correction 
procedure was incomplete and indeed went only half 
way, indicating that the assumptions involved require 
closer examination. 

Of the assumptions made by Schneider (1976, p. 
399), we treat the one relating to deconvolution in a 
crude numerical fashion and offer some comments 
about the possibility of primary extinction. 

Using Schneider's estimate of 0.5 '  for the full width 
of his angular resolution and the method outlined in the 
following section, we have made crude estimates of 
upper and lower limits for the effect of deconvolution. 
The lower limit leads to estimates o f f  which scatter 
about the dotted curve in Fig. 1; this curve has a limit 
value of 16-71, while the upper limit is indicated by the 
dashed curve with a limit value of 16.60. If the upper 
limit were a valid estimate of the effect of decon- 
volution the correction procedure would be effectively 
complete. However, it seems to us likely that  decon- 
volution only accounts for part of the remaining 
correction and that other factors may be significant. 

In respect of primary extinction, Schneider estimated 
that, for the 220 reflexion of Cu and 7-rays of 0.0302 

* Consideration of equation (12) shows that, provided a theory 
leading to the Darwin energy-transfer equations is applicable, a 
linear relationship should hold for small levels of extinction. Failing 
the validity of such a theory, linear dependence is the simplest 
possibility although, with only two coherent groups of points, there 
is no direct experimental evidence for this failure. 
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fi~, the extinction length is 92/am. It can be shown that 
for a perfect sheet crystal of thickness one tenth of the 
extinction length, the estimated dynamical intensity is 
~3% less than that estimated for the kinematical 
intensity (Wilkins, personal communication). Hence, if 
there are effectively perfect regions of the order of 9 
lam, then primary extinction could introduce an 
apparent error of about 1½%. 

If there is in fact a significant contribution from 
primary extinction, then a correction based on the 
Darwin energy-transfer equation is no longer well 
founded. In particular, Pl is no longer a valid estimate 
for the extent of extinction and the zero of extinction 
does not necessarily correspond to P l = 0. 

Theory 

The following theory makes the same assumptions as 
in Schneider (1977) and uses a notation similar, but not 
identical, to his. 

Assuming the validity of the Darwin transfer 
equations the measured reflectivity per unit of angle, 
rm(09), when corrected for linear absorption, is given for 
the symmetric Laue case by 

rm(09) = ½{ 1 -- exp[--2a(09)t/cos 0n]}, (3) 

where O n is the Bragg angle, t is the thickness of the 
specimen and 0(09) is the scattering power per unit of 
angle per unit of path. If, further, the scattering power 
is entirely due to secondary extinction 

0(09)= W(09)Q, (4) 

where W is the probability density (per radian) of the 
reflecting crystallites and 

I + cos 2 20 B 
Q = IFIZ(ro/V) 2 2 3 , (5) 

2 sin 20 B 

where F is the structure factor of a unit cell of volume 
V at the temperature of the measurement. Since there 
are four atoms per unit cell in Cu, the atomic scattering 
factor corrected for thermal motion is given by 

f = F/(4e-M). (6) 

The analysis of the limited experimental data 
presented in Schneider's papers is facilitated by defining 
the corrected reflecting power, r(09), and its integral R 
by the relations 

a(09) t 
r(09) -- - -  - W (09) R. (7) 

COS 0 B 

Thus, equation (3) can be written 

and 
rm(09 ) = ½{1 --exp [ - 2  r(09)] } 

R = C f  z = 4-502 x 10-Tf z, 

where in (5), (6) and (7) we have used the values t = 
0.82 cm, e TM = 0.9125 nominated by Schneider and 
the values r 0 = e2/mc 2 = 2.8178 x 10 -13 cm, a = 3-615 
fi~ and 2 = 0.030105 A obtained respectively from 
Cohen & DuMond (1965, p. 590), Landol t -B6rnstein  
(1971, p. 7), and Muller, Hoyt, Klein & DuMond 
(1952, p. 790). 

Since W m a  x ~ 1000 for most of Schneider's samples 
and f ~ 16.5, his reflecting power, r(09), has a maxi- 
mum of about 0.15 and so a few terms of the series 
expansion of exp[-2r(09)] suffice in equation (8). Thus, 
on integration and using the definition of R in (7), the 
i n t eg ra l  R m of the measured reflecting power is given by 

where 
Rm = R --  W 2 R  2 + ~ W 3 R 3 - - - } W 4 R  4, (10)  

W n =  f w n ( 0 9 ) d o ) ,  (11 )  

and W 1 = 1 on account of the normalization of the 
probability density W. Referring all quantities to the 
final values of f by means of (9) 

Pl = 1 - ( f m / f ) 2 =  W 2 R - - { W 3  R2 + ½W4R 3, (12) 

where fm is the value corresponding to  R m and (10) has 
been used. 

The use of (10) to express R in terms of R,, is 
numerically equivalent to Schneider's procedure and 
since, in the present case, each term in (10) is less than 
10% of the preceding term (see Table 2), the main 
effect of secondary extinction is determined by the 
value of W 2 and the correction is nearly proportional to 
R. 

The actual numerical procedure for reconstructing 
the required values of Pl and fro, for testing the 
consistency of this reconstruction with Schneider's 
values of P2 and for estimating the effect of decon- 
volution will now be indicated. 

Having read off the values of f and W(09) (see Fig. 
2) for one of the eleven volumes, the first step is to 
calculate the values of the power integrals IV,, in 

12OO 
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Fig. 2. The middle full-line curve is a reproduction of Schneider's 
orientation density function for his volume 5. The left-hand full- 

(8)  line curve is a sideways transfer of this curve into a single peak. 
The dotted curve is a double-Gaussian approximation to this 

(9) curve. 
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accordance with equation (11). The values so obtained, 
renormalized so that W 1 = 1, are given in Table 1. 
Starting with a value of f,  equation (9) determines R 
and then Pl and fm follow using equations (12), (10) 
and (9) in turn. These values are given in Table 2. 

Unfortunately, we do not know exactly the values 
Schneider used either for the constant C(4.502 x 10 -7) 
in equation (9) or for fref and so we cannot be certain 
that we have recovered exactly his original implicit 
values of R and p~. He does, however, give values for f,  
W and P2 and these can be subjected to a consistency 
test for proposed values of C and free 

For a given value of C and a particular f,  equations 
(9) and (12) determine R, p~ and fm in turn. Finally, 
using a value for freo the estimated value, P2est, can be 
calculated from (1) and this can be compared with 
Schneider's value of P2. The results of these cal- 
culations are given in Table 2 for C = 4.502 × 10 -v 
and fref = 16-408. While the agreement obtained 
between P2 and P2est is not unreasonable, the value used 
for fref is not compatible with Schneider's statement 
that he used the average of two theoretical values 
obtained by means of band-structure calculations. This 
average is about 16.48 and his plotted value agrees 
with this value. Since f ~_ fref it is easily shown that the 
effect of a change in the values of C and fref on the 
above calculation ofP2es t is given by 

2A fret 
dp2est~ fref +plAC/C" (13) 

Thus, although the calculated value of P2est is insen- 
sitive to a change in the value of C, a change in fref by 
0.4% would change P2est by 0.8%, and this is not in 
agreement with any reasonable reading of Schneider's 
graphs. 

In order to estimate crudely the possible effects of 
deconvolution each density function W was replaced 
by a single-peak representation Weq. 

A typical variation of W (that for volume 5) is 
shown as the curve with multiple peaks in the centre of 
Fig. 2. The solid curve, Weq, to the left has the same 
maximum value and gives the same values for the 
integrals W,. As in Lebesgue integration, for each sub- 
division of the (vertical) density range, W~q takes values 
in this subdivision for the same total angular range as 
does W; the original curve has been shifted sideways to 
give a single peak while at the same time maintaining 
the values of the integrals. This last curve has been 
fitted so as to give the same values of Wma x, W 2, W 3 by 
a double-Gaussian variation, 

--O02 
g exp (-~-rlz) Weq(66 ) ~__ V/(27r) rl 

--66 2 

g,  1 + V/(2zO r2 

(14) 

and the resulting values of g, r~, and r 2 are given 

in Table 1; the adequacy of this procedure was checked 
by calculating the W" 4 integral from Weq. 

The double-Gaussian approximation is shown as the 
dotted curve in Fig. 2 and this representation is used to 
estimate the effect of deconvolution. Clearly the effect 
of this sideways shifting of W is to give a main peak 
with a half-width rl greater than that of the narrowest 
of the individual peaks in W. In fact, in the extreme 
case where W is composed of m identical and isolated 
Gaussian peaks of half-width r, the value of r~ is equal 
to mr. Now for a Gaussian apparatus function of half- 
width r 0, the relation between the 'true' and observed 
values is 

r 2 =  r, ~ -  r0 ~. (15) 

The half-width of Schneider's apparatus was about 
0.25' and so a lower bound to the effect of decon- 
volution can be found by using this value for r 0 and 
recomputing first the deconvoluted values of W 2, W3, 
W 4 and then the resulting values of f. This gives the 
dotted curve in Fig. 1. On the other hand, a rough 
estimate of the greatest expected effect of decon- 
volution can be found by taking r 0 = br 1 and the dashed 
curve in Fig. 1 was derived in this way using b = 0.8. 

Summary 

When the level of secondary extinction can be 
estimated experimentally, it can be combined with the 
corresponding measured integrated intensity to yield 
valuable information as summarized below. 

(1) A plot of either the integrated intensity or the 
derived structure factor, before or after the correction 
for the effect of extinction, against the corresponding 
value of the level of extinction can show whether the 
corrections lead to internally consistent results or 
whether a residual error remains. 

(2) Irrespective of whether the correction to the 
structure factor or intensity is complete or not, 
graphical extrapolation can yield in the limit a value of 
the structure factor which is essentially free of 
secondary extinction, provided the estimate of the level 
of extinction is at least correct proportionately. 

(3) An illustration of the application of this pro- 
cedure is given in relation to the value of f (220)  for 
Cu, based on experimental data for 11 samples 
measured with y-rays by Schneider (1976, 1977). 

(4) The result of re-examination of Schneider's data 
with this procedure is to show that the absolute value is 
~2% higher than that nominated by Schneider. 

(5) The existence of residual error, even for low 
levels of extinction and short wavelengths, indicates 
that the correction procedure based on the Darwin 
energy-transfer equations was not complete. Hence the 
assumptions accepted by Schneider were in practice not 
wholly validated. In relation to these assumptions, 
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comments are offered concerning possible effects of 
primary extinction and the magnitude of instrumental 
broadening is estimated. 

We are grateful to Dr J. R. Schneider for helpful 
correspondence and also to our colleagues, Drs S. L. 
Mair and S. W. Wilkins, for critical comment and dis- 
cussion. 
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Abstract 

Examination of the limiting relation of extinction and 
diffraction makes it clear that extinction is only zero, in 
an absolute sense, when diffracted power is identically 
zero. This latter condition is the proper operational 
identifier for the attainment of the kinematical limit and 
is valid irrespective of the state of perfection of the 
crystal medium. At the limit of zero diffracted power, 
the kinematical (single-scattering or first Born) approxi- 
mation is asymptotically exact so that experiment and 
theory become strictly compatible. Experimental 
structure-factor values which are free from extinction 
effects can therefore be derived in this limit. In practice, 
the advantages of this approach have to be gained by 
greater attention to data collection. Typically, the 
method involves (i) determination of integrated reflec- 
tivity at a series of levels of interaction (attained by 
controlled variation of a suitable physical parameter) 
and (ii) extrapolation of an appropriate function of 
the measurements to zero level of interaction as 
identified by zero diffracted power. Various possible 
procedures for effecting this approach are discussed 
here in general terms. The approach proposed here has 
advantages over the earlier prescription of the kine- 
matical limit [Bragg, Darwin & James (1926). Philos. 
Mag. 1, 897-922] based on the state of the crystal 
medium ('ideally imperfect'). It avoids any need for the 
necessarily approximate assumptions inherent in the 
Darwin-Zachariasen treatment of extinction. It also 
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avoids dealing with the complications arising from 
idiosyncratic or anisotropic extinction effects since 
it refers all cases to zero level of interaction. The 
kinematical limit, as defined here, is a universal limit. 

Introduction 

The conventional (Darwin-Zachariasen) approach to 
treating the problem of extinction in real crystals is 
deficient in a number of important respects, namely: 
(i) The equations involved are usually limited by the 
assumption of the Darwin energy-transfer equations 
(see Becker & Coppens, 1975). (ii) The theoretical 
models of the inner morphology of the crystal involve 
severe approximations which do not accord with 
experimental evidence (e.g. Lehmann & Schneider, 
1977; Lawrence & Mathieson, 1977). (iii) Invocation of 
calculated structure-factor values to assess the degree 
of extinction influences the final model of the electron- 
density distribution because extinction corrections and 
the electron-density distributions are highly correlated 
statistically. 

In view of these shortcomings, it is not surprising 
that a juridical comment has been made recently in 
relation to the conventional approach that 'there exists 
some as yet improperly accounted for source of error' 
(USA National Research Council, 1976). My view is 
that this residuum of error is, at least in part, due to 
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